Variational solution of Poisson's equation using plane waves in adaptive coordinates.
نویسنده
چکیده
A procedure for solving Poisson's equation using plane waves in adaptive coordinates (u) is described. The method, based on Gygi's work, writes a trial potential ξ as the product of a preselected Coulomb weight μ times a plane-wave expansion depending on u. Then, the Coulomb potential generated by a given density ρ is obtained by variationally optimizing ξ, so that the error in the Coulomb energy is second-order with respect to the error in ξ. The Coulomb weight μ is chosen to provide to each ξ the typical long-range tail of a Coulomb potential, so that calculations on atoms and molecules are made possible without having to resort to the supercell approximation. As a proof of concept, the method is tested on the helium atom and the H_{2} and H_{3}^{+} molecules, where Hartree-Fock energies with better than milli-Hartree accuracy require only a moderate number of plane waves.
منابع مشابه
Fast solution of elliptic partial differential equations using linear combinations of plane waves.
Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straig...
متن کاملElzaki transform method for finding solutions to two-dimensional elasticity problems in polar coordinates formulated using Airy stress functions
In this paper, the Elzaki transform method is used for solving two-dimensional (2D) elasticity problems in plane polar coordinates. Airy stress function was used to express the stress compatibility equation as a biharmonic equation. Elzaki transform was applied with respect to the radial coordinate to a modified form of the stress compatibility equation, and the biharmonic equation simplified t...
متن کاملVariational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves
The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...
متن کاملGENERAL SOLUTION OF ELASTICITY PROBLEMS IN TWO DIMENSIONAL POLAR COORDINATES USING MELLIN TRANSFORM
Abstract In this work, the Mellin transform method was used to obtain solutions for the stress field components in two dimensional (2D) elasticity problems in terms of plane polar coordinates. the Mellin transformation was applied to the biharmonic stress compatibility equation expressed in terms of the Airy stress potential function, and the boundary value problem transformed to an algebraic ...
متن کاملVariational Principle and Plane Wave Propagation in Thermoelastic Medium with Double Porosity Under Lord-Shulman Theory
The present study is concerned with the variational principle and plane wave propagation in double porous thermoelastic infinite medium. Lord-Shulman theory [2] of thermoelasticity with one relaxation time has been used to investigate the problem. It is found that for two dimensional model, there exists four coupled longitudinal waves namely longitudinal wave (P), longitudinal thermal wave (T),...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 90 5-1 شماره
صفحات -
تاریخ انتشار 2014